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Abstract

For solving partial differential algebraic equations (PDAES), the space—time conservation element/solution element (CE/SE) method is
addressed in this study. The method of lines (MOL) using an implicit time integrator is compared with the CE/SE method in terms of
computational efficiency, solution accuracy and stability. The space—time CE/SE method is successfully implemented to solve PDAE systems
through combining an iteration procedure for nonlinear algebraic equations. For illustration, chromatographic adsorption problems including
convection, diffusion and reaction terms with a linear or nonlinear adsorption isotherm are solved by the two methods.

The CE/SE method enforces both local and global flux conservation in space and time, and uses a simple stencil structure (two points at the
previous time level and one point at the present time level). Thus, accurate and computationally-efficient numerical solutions are obtained.
Stable solutions are guaranteed if the Courant—Friedrichs—Lewy (CFL) condition is satisfied. Solutions to two case studies demonstrate that
the CE/SE numerical solutions are comparative in accuracy to those obtained from a MOL discretized by the 5th-order weighted essentially
non-oscillatory (WENO) upwinding scheme with a significantly shorter calculation time.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction high accuracy solutions with respect to time through adjust-
ing the time step-sizeAt) adaptively to the stiffness of the
In selecting a numerical method for solving a system ODE/DAE system considered. For the numerical solution
of partial differential equations (PDESs), one often needs to of practical chemical processdsm, Le Lann, and Joulia
make some compromises in the method’s accuracy, effi-(2001a)andLim et al. (2002)have implemented high res-
ciency and robustness. As an example, for the sake of higherglution upwinding schemes (e.g. WENO scherlieng &
efficiency and robustness, often one is forced to choose ashu, 1998 within the framework of the MOL. However, nu-
solver with less accuracy. However, as will be shown in the merical dissipation caused by spatial discretization can still
following study which involves the method of lines (MOL)  be substantial in the presence of steep fronts when the num-
and the space-time conservation element and solution el-ber of mesh points is insufficient. To capture the steep front,
ement (CE/SE) method, in some rare cases, such a forcednoving mesh methods using the MOL were examined. How-
compromise may not be necessary. ever, such approaches generally require long computational
In the framework of the method of lines (MOL), PDEs times because of strong coupling and non-linearity between
or PDAEs are converted to an ordinary differential equa- original physical PDEs and mesh equations added for mesh
tion (ODE) or differential algebraic equation (DAE) system calculation Lim, Le Lann, & Joulia, 2001p
in the temporal space after spatial discretization. The ODE Many physica| prob|ems are modeled with Partial Differ-
(or DAE) time integrator (e.g. Gear-type algorithms) gives ential Algebraic Equation (PDAE) systems. For example, the
packed-bed chromatographic separation can be described by
* Corresponding author. Tel+45-4525-2802; fax:+45-4593-2906. convection-dominated parabolic Partial Differential Equa-
E-mail addresslim@kt.dtu.dk (Y.-l. Lim). tions (PDEs) for mass conservation in the mobile phase,

0098-1354/$ — see front matter © 2003 Elsevier Ltd. All rights reserved.
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Nomenclature

activity in the liquid phase (mol/l)
activity in the solid phase (mol/l)
Debye—Hickel model parameter (kg/mol)
concentration in fluid phase (mol/l)
entrance concentration of fluid

atz =0 (molll)

exit concentration of fluid at = z; (mol/l)
axial dispersion coefficient (ffs)
two-dimensional Euclidean spaces
approximated conservation fluxes in GH)
fluxes

of/ot

of/ou

ofloz

adsorption isotherm function i&q. (1)
vector,h = (f, u)

ionic strength (mol/kg-solvent)
subscript for mesh positions

number of non-zero Jacobian elements
effective adsorption rate coefficient 9
equilibrium constant betwedrj
components

column length (m)

adsorption heat (kcal/mol)

molarity (mol/kg-solvent)

molecular weight (g/mol)

superscript for time levels

outward normal vector of a surface
element or§(V)

equilibrium concentration in interface
between two phases (mol/l)
concentration in solid phase (mol/l)
hindered salt ion concentration (mol/l)
resin capacity (eq./l)

number of mesh points

number of time steps

source terms

approximated source term fluxes in @Ej)
gas constant (kcal/(K mol))

values obtained at previous time level
in Eqg. (10)

shape factor

boundary of an arbitrary space-time reghén
time (s)

uniform time step size (s)

temperature (K)

state variables

au/at

ou/oz

fluid velocity (m/s)

space-time region k>

molar fraction of equilibrium concentrations|

z axial direction of column (m)
Z ion valence
Zy positive or negative charge of salt

AZ uniform spatial step size (m)

Greek letters

o phase ratio of solid volume to fluid volume
(kg/l-resin)

oij Boltzmann weighting factor

£p bed voidage

Vi activity coefficient in the liquid phase

Vi activity coefficient in the solid phase

v CFL number

Or wet resin density (kg/l-resin)

o area of a surface element &WV) or steric
factor (or hindered-salt ion ratio)

w; surface fraction

Ordinary Differential Equations (ODEs) for the solute ad-
sorption rate in the stationary phase, and eventually Alge-
braic Equations (AEs) for the adsorption isotherm between
the two phases. Thus, they lead to a nonlinear and coupled
PDAE system which is often solved, after discretization of
spatial derivatives, by ODE/Differential Algebraic Equa-
tion (DAE) time-integrators in the framework of the MOL
(Beste, Lisso, Wozny, & Arlt, 2000Dunnebier, Weirich,

& Klatt, 1998 Ma & Wang, 1997 Melis, Markos, Cao,

& Morbidelli, 1996). However, the solution procedure
may be inadequate for multi-component and -dimensional
systems since the DAE system obtained from spatial dis-
cretization of the PDAEs can be steep in the axial di-
rection, large in the Jacobian matrix size, nonlinear be-
tween state variables, iterative in the solution procedure
or numerically-dissipative. Therefore, a new numerical
method, such as the one presented here, is needed to en-
hance accuracy and computational efficiency.

For the numerical solution of conservation laws (e.g.
PDEs),Chang and To (1991proposed a new method, the
so-called space-time Conservation Element and Solution
Element or the CE/SE method for short, which is accurate
even at discontinuities and is computationally efficient. By
using the Gauss’s divergence theorem, the CE/SE method
enforces both local and global flux conservation in space and
time. Also because each CE/SE scheme is developed from
a non-dissipative core scheme, its numerical dissipation
can be effectively controlled. While the MOL with a stiff
DAE time integrator (e.g. DASSLRetzold, 1983SPRINT,
Pennington & Berzins, 1993 SODI, Hindmarsch, 1980
has an implicit feature with variable time steps and re-
quires much computational time on fine meshes, the CE/SE
method is an explicit time-marching scheme with a sim-
ple stencil structure (two points at the previous time level
and one point at the present time level) and, as such, is
more computationally efficient. Rather than a compromise
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between accuracy and computational efficiency in the Consider a packed-bed chromatographic adsorption be-
numerical method selection, higher accuracy as well astween the stationary and mobile phases. The PDAE system
efficiency can, consequently, be achieved by the novel involves one PDE, one ODE and one AE:

method. aC  dn A(w, C) 9 aC

In spite of the fact that the schemes constructed using the 7 + %5 + —5— — o~ ( axa—z> =0 (1a)
space-time CE/SE method generally are 2nd-order or less
in accuracy Chang & To, 1991Chang, Wang, & To, 2000 d_” = k(n* —n) (1b)
the new method has been used to obtain highly accurate dt
numerical solutions for 1D, 2D, and 3D conservation laws 0 = g(C, n*) (1c)

involving shocks, boundary layers or contacting disconti- i i . ) o .
nuities Chang, 1995Chang, Wang, & Chow, 1999The wher_e:_JL is the interstitial ve_IocnyDaX the axial dispersion
Courant number insensitive Scheme @hang, 200 has coefficient,« the volume ratio betyvgen the two phases an.d
recently been proposed for the Euler equations (e.g. convecX refers to the mass transfer coefficient. The liquid and solid
tion PDEs for mass, momentum and energy conservation).concentrations for each component are referred taCas

Thea—u scheme Chang, 1995has been developed for the andn, respectivelyn* is the equilibrium concentration (or
Navier-Stokes equations (e.g. convection—diffusion PDEs adsorption isothermiC andn* is related by the functional re-

for mass, momentum and energy conservation). An implicit 'a“Q” Eq'. (1c)whose exact form used in the numerical sim-.
solver for boundary value problem€lfang, Wang, Chow, u!atlops is cqse—dependent. que thg Peclet number for axial
& Himansu, 1995, multi-dimensional CE/SEQhang et al.,  diffusion (ratio of convection to diffusiorRe = v Lc/Dax)
1999; Zhang et al., 2002local mesh refinemenChang, 'S often large in chromatographic processe®ylain &
Wu, Wang, & Yang, 200pand stiff source term treatment for Finlayson, 1998 Eq. (1) is classified as a convection-
convection-reaction PDES/( & Chang, 1997 have been dominated par:atbohc. PDAE system. _T.he extension to the
presented for the space-time CE/SE method. For any readef’ DAE system is derived from the original (?E/SE method
who is interested in the CE/SE simulation, the Fortran code (€hang, 199pand Scheme II¢hang, 200, introducing
is available inChang (1995, 2002) CEs and SEs.

Molls and Molls (1998used the CE/SE method to solve . .
the 1D/2D Saint Venant equations. Here, a modified CE/SE 2.1. Conservation elements (CEs) and solution elements
method (i.e. non-iterative formulae) was proposed for solv- (SEs)
ing PDEs including source terms (or reaction ternvijiz,
Mitrovic, and Gilles (20025successfully applied this method
to solve a population balance equation described by a hyper-

As a preliminary, let state variables)( fluxes €) and
source termsp) in Eq. (1)

bolic integro-PDE, where superior numerical performance ug C+an
of the CE/SE method is shown over a method of lines with ;, — | 4, | = n (2a)
a flux-limited finite volume scheme. . 0
Finally note that, in addition to the MOL and the CE/SE
method discussed here, there are other reputable methods A C_D aC
which could be used to solve the same sample problems to L e
be presented in this study. A good source of references inf =] f2 | = 0 (2b)
this respect is the paper Boulain and Finlayson (1993) f3 0
Moreover, numerical comparisons of the CE/SE method and
other established methods (e.g. MacCormack method) can D1 0
also be found irChang et al. (2000) p=|p|=|kn*=n (2¢c)
The present study addresses an extension of the CE/SE 3 2(C, n*)

method of Chang (2002)to PDAE systems. In the next

section, the CE/SE method is reformulated for PDAE sys- Let (i) hu=(f, um), m = 1-3; (i) v="%(3/9z, 3/r),

tems, illustrating the packed-bed chromatographic separa-i.e. V is the divergence operator in a two-dimensional Eu-

tion problem. Numerical studies follow iBection 3 clidian spaceE; in which x; = z andx, = ¢ are the space
and time coordinates. Then the three component equations
referred to above can be expressed as:

2. Space-time CE/SE method Vhy=pm, m=1-3 (3)

The CE/SE method has many non-traditional features, in- By using Gauss’s divergence theorent it can be shown
cluding a unified treatment of space and time, the introduc- thatEq. (3)is the differential form of the integral conserva-
tion of conservation element (CE) and solution element (SE) tion law:
a_nd a novel shock capturing strategy without special tech- Iy, ds = / pmdV, m=1-3 (@)
niques. SV v
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where (i) V) is the boundary of an arbitrary space-time ABCD and ADEF depicted irFig. 1(a) and (kg)and (ii)
regionV in Ep; (ii) ds = don with do andn, respectively, CE(, n) is the union of CE(j, n) and CE.(j, n), i.e. the
being the area and the outward normal vector of a surfacerectangle BCEF.

element or5(V). Note that, becauds, dsis the space-time Let the coordinate of any mesh poiitif) be ;, t*) with
flux of h,, leaving the regiorV through the surface element z; = j Az and" = ¢t Az. Then, for any(z, ) € SE(j, n),
ds, Eq. (4) simply states that, for eaoh = 1-3, the total un(z 1), f,(z t) andh,,(z t), respectively, are approximated
space-time flux offi,, leavingV throughS(V) is equal to the by a 1st-order Taylor expansion:

integral ofp,, overV. Also, since, inEy, do is the length y def

of a differential line segment on the simple closed curve im(z, t; j,n)= (um); + (Uumd'j(z — z;) + umy’j(t — 1*),
V), the surface integral on the left side B§. (4) can be m = 1-3 (6)
converted into a line integral. In fadEq. (4)is equivalent

to (Chang, 199% def

(et M E )+ i@ = 2) + s 0 — 1),

C.C.
?g (—ty dz + frdf) = / pmdV, m=1-3 (5) m = 1-3 @)
1% v
. - o and
where the notation c.c. indicates that the line integral should
be carried out in the counterclockwise direction. A oo oydef - . ~ -
el : ) h (2,0t J,n)=(fim(z, t; J,n), Uy (z, t; j,n)), m=1-3

At this junction, note that the CE/SE method is de- " / Im / " /

veloped to model space-time conservation laws such as (8)

5 noniradiional features nlude: () a unfied wroament ore,(n)fs (umdfs (ums ()l ] and () ate

: . . - ) constants in SE(n). They, respectively, can be considered

of space-time; (ii) the introduction of conservation ele- 55 the numerical analogues of the valuesugf du,./oz,

ments (CEs) and solution elements (SEs) as the vehiclesaumlat' fn, 8f,u/0z andaf,, /ot at (z;, 1), respectively.

for enforping conservation Iz_aws; (iii) the req.uir_em(_ent that  Note that, according t&gs. (2a) and (2bys=0, f,=0

a numerical scheme be bunt.from_a .non.—d|SS|pat|ve COre and £3=0. As a result, it is assumed that

scheme such that the numerical dissipation can be effec-

tively controlled; (iv) the requirement that the mesh values (#3)j = (u3.); = (u3); =0 )

of the state variablesuf) and their spatial derivatives n_ n_ n

(3u,,/92) be considered as independent marching variables /2 = (f2 = (f20); = 0 (10)

to be solved for simultaneously; and (v) a time marching (f3)" = (f3,)} = (fa)} =0 (11)

strategy that has a space—time staggered stencil at its core

and, as such, can capture shocks without using Riemannln the CE/SE frameworkumy'’;, (i)'}, (fm2’; and(fmo’,

Solvers. m = 1-3, are considered as functions(ef,)’; and (um2)’,
In Fig. 1, the mesh points (e.g. points A, C and E) are = 1-3. As a result ofEgs. (9)—(11) this general rule

marked by circles. They are staggered in space-time. Anyimplies that(ua,)’, (u2)’j, (f1)}, (1)} and(f1,)’; must be

mesh pointj( n) is associated with a solution element SE( ~ considered as functions o#,,)’; and (um2’}, m = 1 and 2.

n) and two Conservation e|ements % n) and CEF(J! These fUnCtionS will be defined |mmed|ate|y

n). By definition, SEj, n) is the interior of the shaded According toEg. (2a) C = u1 — auz and it implies that

space—-time region depicted kig. 1(a) It includes a hor-

izontal line segment, a vertical line segment, and their im-

mediate neighborhoodChang, 1995k Also, by definition, where the subscriptz' means the partial derivative with

(i) CE_(j, n) and CE_(j, n), respectively, are the rectangles respect to spacedfgz), as mentioned earlier. Combining

C, =u1;, —auy; (12)

-1 12§ 2 g
1 ! n+1
Fn+1/2
a2 <> - B A A F
a2 A " ﬁ
t Y -n-1/2
C D D E
n-1
z
(a) Space-time staggered grid near SE(j,n) (b) CE_(j,n) and CE.(j,n)

Fig. 1. The solution element (SE) and conservation element (CHh agosition andnth time level Chang, 1995
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Egs. (2b) and (12)one has:

f1=vL(u1 — aup) — Dax(u1, — auz;) (13a)
ad

f1z = v (ugy — aup;) — a_ZDax(Mlz —auy;) (13b)

Jar = v (uar — quz) — Dax(u1r — auz) (13c)

An obvious numerical version dq. (13a)is:

(fD = v (W) — au2)}) — Dax((u1,)} — ae(u2:)’;)(14a)

Also, by neglecting the contribution from 2nd-order deriva-
tives, the numerical versions &fqs. (13b) and (13cnay
be taken as:

(f1)} = v ((u12)]
(f1)j = v (W)

In order that(umt)ﬁ, m = 1-3, can be determined in terms
of (umz);’., m = 1-3, it is assumed that, for any, ) €

SE(j, n),
V- hp(z,t; jin) =0,

—a(uz)}) (14b)

—auz)}) (14c)

m=1-3 (15)

Thus, within SEJ, n), the contribution of the source term
(pn) that appears ikq. (3)is not modeled irEq. (15) Note

that (i) because it is the interior of a region that covers a hor-
izontal line segment, a vertical segment and their immediate

neighborhood, as mentioned earlier, B) is a space—time
region with infinitesimal small volume; and (ii) as will be

shown, the contribution of source terms will be modeled in a

numerical analogue d&g. (5) With the aid ofEqgs. (6)—(8)
Eqg. (15)implies:

(umd’} = —(fmd}.  m=1-3 (16)
CombiningEgs. (9)-(11), (14) and (16dne has:

(1) = —(f1)] = v (1)} — auz:)’) 17)
(u2)j = —(f22); =0 (18)
(uz)j = —(f3); =0 (19)

Furthermore, with the aid of (17) and (1&g. (14c)and
implies:

(fu)} =

Note that, by usingEgs. (10), (11), (14a), (14b), and

(A7)-(20) (umo’}, (fw)}, (fmdj and (fmy’; can be deter-
mined explicitly in terms otum);% and(umz);?.

—vf (1)} — au2)) (20)

2.2. Discretization of PDAEs

As in the construction of many other dissipative 1D CE/SE
solvers, the current solver will be constructed without re-
quiring that the conservation lavsq. (5) be enforced nu-
merically over both CE(j, n) and CE_(j, n). InsteadEq. (5)
will be enforced only over CE(n).

To proceed, note that, iRig. 1h (i) BF belongs to SE(
n); (ii) ¢ CB andCD belong to SEj — 1/2,n — 1/2); and
(i) ED andEF belong to SEj + 1/2,n — 1/2). Thus,
the boundary CE{( n) (i.e. the rectangle BCEF depicted in
Fig. 1(a) and (b)s covered by the subsets of $Hf) and
SE(j+1/2,n—1/2). As s result, it can be shown Eq. (5)
that approximated conservation fluxei%‘ji, is:

C.C.
(Fyt = yﬁ (—iidz + 7 ) 21)
S(CE(j,n)
With the aid ofEqgs. (6) and (7)the line integral irEq. (21)
results in for each component é"y

= -1/2 1/2
(F)t = 3A2[20un)} = (um)1105 — ()15
-1/2 1/2
+(sm)\a7s — (m) 175l m=1-3 (22)
where
n—1/2def AZ n-1/2 = At n—1/2
(Sm)]:tl/Z_ (umz)]il/z + Z(fm)j:tl/Z
T (23)

+ E(fmt)jil/z,

In addition, approximated source term fluxeigj’l are ob-
tained withinV(CE(, n)):

(Y = /V ()1 dv

The volume integral ifEq. (24)leads to for each component

pn .
of Pj.

B Az At/2 AZ At
(Pn1)7 = (p:n)?/ dz/ dr = T(Pm)",
0 0

m=1-3

(24)

(25)

In the current study, the numerical analogueEgf (5)will
be taken as:

(F)i = (P)}, m=1-3 (26)

With the aid ofEqgs. (22) and (25)Eq. (26)implies that:

[2um)t — At(pm)"] = [@m)' 1105 + @m)' 102
—(sm)}y1)s + ()15 =0, m=1-3 27)

Using Egs. (2) and (27)a discretized form oEq. (1) is
given within CE{, n) as follows:

n—1/2

1/2
(1)t = 3[()" 35 + WD) 1)

—-1/2
+(1)] 1/2 ey

1/2
— (s 1)j+1/2 iy ]

+ (s 1)] 1/2
(28a)

2(u2); — AK((n™)} — (uz)"-)

1/2 1/2
("‘2)]+1/2 + (UZ)J 1/2 i iy

(32)]+1/2 + (SZ)] 1/2
(28b)

g((u1)} — a(u2)j, n)) =0 (28c)

Obviously, by usingEq. (28a) (ul)’} can be determined
explicitly in terms of the known mesh values at the—
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1/2) time level. Eq. (28b)and the equation obtained by
substituting the known value cﬁhl);? into Eq. (28c)form a
system of two nonlinear equations f(orz);! and(n*)’}. This

system of equations can be solved by a Newton'’s iteration

method.
Here, Az and At are adjustable computation parameters.

How their values should be chosen is problem-dependent.

A small spatial step sizeA2) should be chosen for a prob-
lem associated with steep moving fronts. Also, a small CFL
number ¢ = v At/Az) is preferred for a problem that is
stiff with respect to time.

As explained earlier, in addition t@,,)", m = 1-3, at
each mesh poinf,(n), the independent discrete variables to
be solved also includ(mmz);%, m = 1-3. Becauseug);% =
0 and(ugz)’} = 0, in the following, we will describe how
(umz)’}, m = 1 and 2, can be evaluated in terms of known

values of(um)".ﬁ//;, (umz);f;iﬁ and (u,,)", m = 1 and 2.

To proceed, note that the stability of a CE/SE scheme

requires that the CFL number< 1 (Chang, 199% With-

Eq. (32)is reduced forEq. (1b)with the aid ofEq. (18)
into:

-1/2
Fuz)! + [(2)] 115
n—1/2

F(A =D Az/HU2:) 1175
1+ v

4

Az (33)

(li2:4)} =

Note that, becaus(ag);% = (ugz)’} = 0, the only independent
discrete variables at any mesh poiptrf) are (um)’} and
(ump", m = 1 and 2, which can be evaluated uskgs. (28)
and (]29)

Consequently, the present CE/SE method WEts. (27)
and (28)leads to a PDAE system which, at each time level,
is associated with a block diagonal Jacobian matrix. Let the
number of mesh points Bénesh The maximum number of

non-zero Jacobian elements for the CE/SE methﬁ&,{SE,
isin Eqg. (1)

CE/SE

Jmax. = (83X 3) X Nmesh (34a)

out using special techniques that involve ad hoc parameters the case of linear source terms or without the source term,
generally the numerical dissipation associated with a CE/SE the Jacobian matrix is further reduced to a diagonal form:

simulation with a fixed total marching time increases as the

CFL number decreases. As a result, for a small CFL number J;,

(sayv < 0.1), a CE/SE scheme may become overly dissi-
pative. To overcome this shortcoming, a new CFL number

insensitive scheme, i.e. the so called Scheme Il, was intro-

duced inChang (2002)The new scheme differs from other
CE/SE schemes only in ho(/umz);! is evaluated. According
to Scheme II, we have:

[L+ fvD )] @mazr)"
L+ QD Cns)] e )

n— =12
) = D + Gl "
(29)

where

0.5
FpE= (30)

[v|
(rmi)n'd_Ef Kum&)]' 1, m=12 (31)

I min(|Gimen)" - | Gimz)'H D)

) £ L) 12 + (A1/2) ()5 113

o F(L— VD AZ/D) wmd" 1173]
M2 T A7 1+l ’
m=1,2 (32)

Here, as explained i@hang (2002)for eachm, (i) (itmz)’;

and (ﬁmz_);! can be considered as the spatial derivatives
of u, at the point |, n) evaluated from the right and the
left, respectively; and (ii) the expression on the right side
of Eq. (29)represents an weighted average(zmpr);% and

~ n
(Mmz—)j-

CE/SE

= (1x 1) X Nmesh (34b)

ForEg. (1) aband matrix is obtained, when a DAE integrator
is used in the framework of the method of lines (MOL).
Let the length of the upper and lower band matrix be MU
and ML, which depend on the size of spatial discretization
and nonlinearity of the PDAE considered. The maximum
number of non-zero band-Jacobian elements for the MOL
is known as form = 3:

MOL
JmaX

= 3NmesiML + MU + 1) — ML (ML + 1)

—iMU(MU + 1) (35a)

For example, in the simplest case that the convection term is
discretized by a 1st-order backward scheme and the diffusion
term by a central scheme Eq. (1) ML = MU = 3. The
smallest number of non-zero Jacobian elements in this case,
JMOL " can be approximated for the state variabeand its
time derivative (d/dt) at each time step:

Jr'.:,]/llﬁ)l_ ~ (3 X 3) X Nmesh (35b)

As a result, the following relation can be derived:
CE/SE CE/SE

Jmin/ < Jma>/< = Jnl\{nligl_ = JMOL (36)

Eq. (36) means that the number of non-zero Jacobian el-
ements for the MOLJMOL | is not less thar/e,>C. The
computational time is normally proportional to the number
of non-zero Jacobian elemen® (nultiplied by the number

of time stepsiime), i.€. J x Nime. Therefore, it is expected
that the computational time of the CE/SE method is shorter
than the MOL under the condition of the same number of
time steps. Especially for non-stiff systems (e.g. chromato-
graphic adsorption problems), the CE/SE method will save
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the computational time because the small number of time At z = Lcandn =1,2,3, ...,

steps can be used. ct =" C.)Yt, =0 40b
The stability of the CE/SE method is limited only by the ~~ Vmesh — ~ Nmest—1” (Comesy (400)

Courant—Friedrichs—Lewy (CFL) conditioi€hang, 1995 Note thatC] = (u1)] — a(u2)] in Eq. (40a)is calculated

as mentioned earlier. If the fluid velocity,() is given, the linearly sinceC; = (u1); — a(u2)} can independently be
condition is expressed in term of the CFL number=£ obtained fromEg. (28)

v At/ Az): For a recycle flow, consider a boundary condition instead
O<p <1 37) of Eq. (393)

Atz =0andvs, v (C1— Cout) = Dax(C 41
While the implicit DAE integrator has self-adaptive feature LG out) adCahn “1)

about the time step sizé\(), the present CE/SE method has whereCy,t is the outlet fluid concentration at= L¢(j =
a fixed value ofAt satisfying the CFL condition. Nmesp- The condition is represented on discrete points in-
stead ofEq. (40a)

2.3. Boundary condition treatment
Atz=0andn=1,23,...,

Boundary conditions (af = 1 andNmesp) for state vari- cn n — Do(C.) C.Y = C5 = Chpesn
ables (1) and its spatial derivativesif) are needed only at VL(CY = Cpegy) = Dax(Co)1, (€)1 = 2Az

each integer-time levek(= 0, 1, 2, 3,...) in the space—time (42)

CE/SE method. At each half-time level &£ 1/2, 1+ 1/2,

2+1/2,...), these valuesu(andu,) for all mesh points ~ SinceCy = (vl . —a2)y, is also obtained in-

(j = 14 1/2,24 1/2, ..., Nmesh— 1/2) are calculated dependently fronEq. (40b) C7 can be calculated directly.

on the basis of these values of the previous time level (i.e. Therefore, the boundary condition treatment (or recycle flow

integer-time level) without boundary values. Note that the handling) does not break the form of the block diagonal Ja-

CE/SE method has a staggering mesh structure and intrin-cobian matrix, which is of great advantage to the MOL that

Sica”y Space_time triang'e Computationa| elements. Often |eadS to a Sparse JaCObian matriX fOI’ the hand"ng Of
Without particular boundary conditions, the two boundary recycle flows.

conditions of first and last spatial points £ 0 andz =

L¢) at each integer-time level are assumed as follows (for

simplicity, subscript i of u,, andu, is omitted): 3. Numerical studies
-1/2 n—1/2 . .

Atz =0, u’{=u'{+1;2, (uz)'{=(uz){+152 (38a) Two examples are tested. The first example is an
one-component chromatographic model with a linear ad-
_ sorption isotherm to reveal the properties of the CE/SE

Atz = L n _ n-1/2 . h
=Le UNpesh = UNpesir1/22 method in comparison to the standard MOL (method of

-1/2 i ) '

(MZ)r]leesh _ (”z)lzqvmewl/z (38b) lines). The system can simply be reduced to a PDE system

including one PDE and one ODE. However, a model in the
The above equations mean that the first and last bound-PDAE form is numerically solved with or without axial dis-

ary values 7, U e U] and (uz)’}vmesr) at the present  persion on 21 or 201 mesh points. The second example is
time level ¢') are estimated by the first and last values a two-component chromatographic model with non-linear

(u’ijﬁ “’11\1;15—1/2’ (uz)ﬁig a”d(“z)?v;tﬁf—l/z) atthe pre-  adsorption isotherms, which is also a PDAE system.
vious time level {"~%/2). In the CE/SE method, the Newton—Rhapson algorithm

Suppose that a boundary condition Ey. (1a)is imposed 1S @émployed to solve a system of nonlinear equations. The
absolute and relative tolerances for convergence are both

as below: X -

equal to 10 x 10~° and 3—4 iterations are needed for a
At z=0andvzs, v (C1— Cin) = Dax(C)1 (39a)  satisfactory convergence.
Atz=Lcand¥s, (Co)ypu=0 (39b) For comparison with the CE/SE method, a Backward Dif-

ferentiation Formulae (BDF) DAE time integratdedtzold,

whereCi, is a known feed concentration just before entering 1983 in the framework of the MOL (hereafter it is called
to the column. Due t&q. (39a)r Eq. (39b) one value ofthe ~ the MOL) is used with several spatial discretization meth-

two boundary valuesi{ and (u.)} Oru};vmesh and(uz)’;vmesf) ods. The convection term (1st-order spatial derivative) is

remains unknown and must be assumed or given by the userdiscretized by a two-point backward upwinding scheme

A simple assumption is applied f&q. (39)as follows: (1st-order upwind), a two-point central scheme (2nd-order
central), a six-point upwinding scheme (5th-order upwind),

Atz=0andn=1,2,3,..., a 3rd-order WENO upwinding scheme on a flexible sten-
— Cin cil (3rd-order WENO) and a 5th-order WENO upwinding

LY — _ 2 . .
(€1 = Cin) = Dax(C)1. (G =—5—— (408)  scheme on a flexible stencil (Sth-order WENO). For the
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Table 1

central discretization is employed. The detailed formulas Accuracy, temporal performance and stability evaluation for a chromato-

are presented ihim et al. (2001a) All the resulting DAE

systems are characterized by a band Jacobian matrix which

is numerically evaluated. In the BDF DAE integrator, the
absolute and relative tolerances are set equallyGea 10°
for first example and.D x 10~* for the second example.

All simulations are performed on a single 1.3 GHz Athlon
processor equipped with 516 RAM. The computational time
(or CPU time) is the time required for a single task in the
computer. Accuracy is measured at a momehiof at a
position @) by the Ly-error defined as follows:

NmesHOr Ntime)
Li-error=
i=1

X | (u;)reference— (4i)computed Az(Or Ar) (43)

where (J;)referenceS the high-accuracy numerical (reference)
solution and (;)computedis NUMerical solutions evaluated by
the MOL or the CE/SE method. Instability is indicated by
spurious oscillatory behavior in the numerical solutions.

3.1. One-component chromatographic model with a linear
adsorption isotherm

The packed-bed chromatographic problefy. (1) is
solved for one component with the volume rasio= 1.5,
the fluid velocityv. = 0.1 m/s, the axial dispersion coeffi-
cient Dax = 0 or 10 x 10~°m?/s, and the adsorption rate
coefficientk = 0.0129s L. A linear adsorption isotherm is
used for the algebraic equation B§. (1c)

n* =0.85C (44)

The column length is the interval & z < 1.5 and the
integration time is 0< r < 10s. As the initial condition,
C(0,z) = 0,n(0,z) = 0 andrn*(0, z) = O for all z except
z =0 andz = L. The two boundary conditions & 0 and

7z = L¢) are given inEq. (39)

First, Eq. (1)without the diffusion term is solvetDay =
0) and with a step input concentrationzat 0 (Cin = 2.2
for ¢ > 0.0). In the second and third tests, the diffusion term
is included withDax = 1.0 x 102, Here an inlet square
concentration pulse is considered as follows:

Cin=22, for 0s<r<20s (45a)

Cin=0.0, for 2.0s<r=<100s (45b)

The numerical solutions are obtained on 201 or 21 equidis-
tant spatial mesh points. The CFL number for the CE/SE
method is given at = 0.4.

In the first case (no diffusion and 201 mesh points),
the high-accuracy reference solution is obtained using a
5th-order WENO scheme on 301 mesh points (kéa
et al., 2001p In the second or third case (diffusion and
201 or 21 mesh points), the reference solution is obtained

graphic adsorption PDAE without axial dispersion on 201 mesh points

Accuracy CPU
(L1 errorp time (sp
MOL 1st-order upwind 0.1307 0.9
2nd-order central 0.1140 1.3
5th-order upwind 0.0218 2.3
3rd-order WENO 0.0426 59
5th-order WENO 0.0252 9.5
CE/SE Scheme Il Newton iteration 0.0185 1.2

(CFL =0.4)

a L, error att = 10s.

b CPU time during 10 integration time.
¢ Unstable numerical solution.

Table 2

Accuracy, temporal performance and stability evaluation for a chromato-
graphic adsorption PDAE with axial dispersion and square input concen-
tration on 201 mesh points

Accuracy CPU
(L1 errorp time (sf
MOL 1st-order upwind 0.2075 1.6
2nd-order central 0.0979 1.9
5th-order upwind 0.0060 2.9
3rd-order WENO 0.0449 7.7
5th-order WENO 0.0168 11.3
CE/SE Scheme Il Newton iteration 0.0087 1.3

(CFL = 0.4)

a1, error att = 10s.

b CPU time during 10s integration time.
¢ Unstable numerical solution.

on 401 mesh points through the CE/SE method, where the
calculation time was 4.1s.

Tables 1-3report numerical performance on accuracy,
computational efficiency and stability for the chromato-
graphic adsorption problem without or with axial disper-
sion on 201 or 21 mesh points. The 2nd-order central and
5th-order upwinding schemes give spurious oscillatory so-
lutions near steep regions. Thus, the two methods seem
to be inadequate for convection-dominated problems as

Table 3

Accuracy, temporal performance and stability evaluation for a chromato-
graphic adsorption PDAE with axial dispersion and square input concen-
tration on 21 mesh points

Accuracy CPU
(L1 errorp time (sf
MOL 1st-order upwind 0.5423 0.04
2nd-order central 0.5430 0.04
5th-order upwind 0.2385 0.06
3rd-order WENO 0.4250 0.14
5th-order WENO 0.2945 0.12
CE/SE Scheme Il Newton iteration 0.2450 0.02

(CFL =0.4)

a1, error att = 10s.

b CPU time during 10s integration time.
¢ Unstable numerical solution.
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2.5 - = Reference Solution
------- Ist up wind
——2nd central
20 —a— 5th WENO
- ——o—CF/SE, CHL=04
S 151
(=)
g
=
£ 1.0
£
b=
51
g 05
Q
0.0 t

0.80 0.90 1.00 1.10 1.20
Axial direction ( m)

Fig. 2. Fluid concentrationQ) profiles according to numerical schemes ngar 1.0 atr = 10 s for a chromatographic adsorption problem without axial
dispersion(Dax = 0) on 201 mesh points.

mentioned inLim et al. (2001a) The 1st-order upwinding  curate and 2nd-order central is highly oscillatory. The MOL

scheme (called 1st-order upwind) is not accurate becausewith 5th-order WENO and the CE/SE with CF: 0.4 ex-

of its low order of accuracy. The two WENO schemes hibit similar resolution in steep regions without spurious os-

(3rd-order and 5th-order) enhance accuracy and stability butcillations.

at the cost of longer computation time. The CE/SE method On the 21 mesh points, numerical solutions are much less

gives, in the three case studies, the most accurate solutioraccurate than those on the 201 mesh points Sge 4).

with very short calculation times in a stable manner. However, it takes much less computational time, as reported
In Fig. 2, numerical solutions of the fluid concentration in Table 3 The 5th-order upwinding scheme seems to be

(C) are depicted near= 1.0 atr = 10s for the adsorption ~ most accurate but gives spurious solutions, showing negative

problem without axial dispersion. Its reference solution is a concentrations before and after steep fronts.

discontinuous profile at = 1. The CE/SE method shows the One of the advantages for the CE/SE method is that the

best solution without spurious oscillation of the six schemes numerical error does not accumulate with respect to time

tested. A smeared peak is shown for the problem with dis- and space at a fixed CFL number (or a space—time flux con-

persion inFig. 3. As expected, 1st-order upwind is not ac- servation feature), as mentioned above. Whereas, the error

Reference Solution

------- Ist upwind
2.5 - —>— 2nd central
2 a  5th WENO
204 o CE/SE, CFL=0.4
5
g 1.5 4
c
o 10
§ 04
5
® 05
c
S
0. ‘ 0.80 1.20
-0.5 - " Axial direction (m)

Fig. 3. Fluid concentrationQ) profiles for different numerical schemes arounet 0.9 atr = 10 s for the single component chromatographic adsorption
problem with axial dispersioDax = 1.0 x 10~°) and square input concentration on 201 mesh points.
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Reference Solution
------- Ist upwind
—>— 5thupwind
—a—— 5th WENO
——o— CE/SE, CFL=0.4

0.80
-0.5 Axial direction ('m)

Fig. 4. Fluid concentrationG) profiles for different numerical schemes aroung 0.9 at: = 10 s for the single component chromatographic adsorption
problem with axial dispersioiiDay = 1.0 x 10~®) and square input concentration on 21 mesh points.

is amplified with time in traditional discretization schemes approach, these schemes are also non-dissipative with time.
(e.g. 1st-order upwind, 2nd-order central, and 5th-order up- Fig. 5 shows the propagation of steep waves with time for

the second case on 201 mesh points. Note that the 5th-order
schemes for 1D problems are constructed by a finite volume WENO scheme (circles) and the CE/SE method (solid line)

wind) in the framework of the MOL. Since the WENO

15

2 (a) t=2s
O s
C
.S
T
)
cC
3 &
(&S]
€ 05
(@]
8§ |
0
0 0.5 1
axial direction, z
2

(c)t=8s

1.5

0.5

Concentration, C

axial direction, z

15

Concentration, C

Concentration, C

(b) t=5s

axial direction, z

2 (d) t=10s

axial direction, z

Fig. 5. Fluid concentrationQ@) propagation with time for a chromatographic adsorption problem with axial dispersion on 201 mesh points (dashed line:
1st-order upwind, circles: 5th-order WENO, solid lines: CE/SE with GFD.4).
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2 (@)t=2s 2 (b) t=5s
O
c15 O 15
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Fig. 6. Fluid concentrationQ@) propagation with time for a chromatographic adsorption problem with axial dispersion on 21 mesh points (dashed line:
1st-order upwind, circles: 5th-order WENO, solid lines: CE/SE with GFD.4).

have a non-dissipative feature, since the waves do not widenisotherms (i & Pinto, 1995 are compared irfrig. 7 with

with time. In contrast, the peak of the 1st-order upwinding results predicted by the model. The adsorption isotherms

scheme (dashed line) broadens continually as time increasesare predicted folCnac) = 0.207 mol/l within a reasonable
Fig. 6 depicts the wave propagation on 21 mesh points. error bound.

The oscillatory behavior of the 5th-order upwind scheme  Table 4shows design, operation and simulation parame-

(squares) is clear. The CE/SE method (solid line) is superior ters used in this numerical study. Since solid concentrations

in accuracy to the 5th-order WENO scheme (circles) for all (n; andn}) have the units (mmol/kg-resin), the phase ratio

times. (o) in EqQ. (1a)is defined as:
3.2. Two-component chromatographic model with o= 1=e Or (46)
nonlinear adsorption isotherms €b

wheregy, is the bed voidage ang the resin density with the
value given inTable 4 The resin is initially saturated with
chloride ions (Ct). Note that mass transfer coefficiet) (
should have the same value for the two components (BSA
and CI") in order to satisfy the electro-neutrality condition.

An anion-exchange preparative chromatography is con-
sidered in an isocratic mode for Bovine Serum Albumin
(BSA) protein separation. A non-linear equilibrium (or
isotherm) modell(i & Pinto, 1995; Raje & Pinto, 199y7is
used to describe non-ideal solution behaviors for salts in
the liquid phase using an extended Debye—Hiickel model nt = n1(z1 + 0z2) + z2n2 47)
(Bromley, 1973 and non-ideality for proteins and salts
in the solid phase using a spreading-pressure-dependentvhereny is the total resin capacitg; andz are the ion
equation Talu & Zwiebel, 198. valences for BSA and Cl|, respectivelyo is the steric factor

In Appendix A the adsorption isotherm model is pre- for the BSA—NaCl system. Note th&ig. (47)in the solid
sented and the model parameters are given for the BSA—phase corresponds tBg. (A.6) on the interface or resin
NaCl system. The experimental data for the adsorption surface (seéppendix A).



12

Surface BSA conc. (g/kg-resin)

150

125

100

75

50

25

Y.-I. Lim et al. / Computers and Chemical Engineering xxx (2003) XXX—XXX

o
1 g O
! o

o

O

&0

I o O experimental data
{1 oo —— model prediction
b
i
0 10 20 30 40 50 60

Liquid BSA conc. (g/l)

Fig. 7. Experimental data ihi and Pinto (1995)and model predictions{ = 18.0 ando = 24.0) for BSA equilibrium isotherms afnaci = 0.207 mol/l.

Replacingzq. (1c)with Eq. (A.13)involving Egs. (A.1)—(A.12) 0

the resulting PDAE system to be solved contains two PDES,

two ODEs and two AEs. That i€q. (2)is reformulated:

C1+ any
ni
0
“ Co+ anp
n2
0
0C1
v C1 — Dax—
0z
0
0
f= d0C»
vLC2 — Daxy—
0z
0
0
Table 4

(48a)

(48b)

k(ny —n1)
81(C1, C2,n7, n3)
0

k(n% — n2)

(48c)

§2(C1, C2, n7, n3)

where subscripts ‘1’ and ‘2’ means component-1 (BSA) and
component-2 (Cl), respectively. ThusC1 = uj — aup and
C2 = u4 — aus. The model parameters are givenlable 4

The system of equations discretized in the framework of
the CE/SE method leads tq@x 6) block diagonal Jacobian
matrix of the lengtiNmeshat each time Ievem%g)/(SE = (6x
6) x Nmesh- Each block Jacobian matrix which contains non-
linear coupling terms between its elements is evaluated for
solving the equation system through the Newton—Rhapson
algorithm, numerically evaluating derivatives of the source
term (cp/du).

Design, operation and simulation parameters in a BSA ion-exchange preparative chormatography

Design parameters

Operating conditions

Simulation parameters

Lc (cm) 25

i.d. (cm) 0.46
&b 0.7947
nr (meq./kg-resin) 360

or (kg/l-resin) 3.68

Q (ml/min)
v (cm/min)
T (°C)

Co (mmol/l)
no (meq./kg-resin)

Cin (mmol/l)

1 k (min~1) ki =k, =6.0
7.57 Dax (cm?/min) 1.89x 10°4
354 Nmesh 201
Ci=0,n =0 v (=VL(AVAZ)) 0.73

C2 = 207, np = nTa

C, =0.889,C, =207 for 0s<t < 0.5s t (min) 60

Cy =0,Cy; =207 for 0.5s<t < 60s

a 1st-component: BSA, 2nd-component: NaCl.
b Wet resin density 4 ) is based on the particle volume including the pore volume.
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Table 5 for the CE/SE method, its computational time is much faster
Accuracy, temporal performance and stability evaluation for a BSA than those of the five different MOL due to the small size
ion-exchange chromatography on 201 mesh points of the block diagonal Jacobian matrix.

Accuracy CPU time The 2nd-order central discretization scheme (2nd-order
(L errorf  (min)® central) does not give reliable solutions, because substan-
MoL Ist-order upwind  2.629 95 tial oscillations of liquid concentrations including negative
2nd-order central & - values lead to non-convergence in solviag. (A.13) The
Sth-order upwind  1.068 140 o .
3rd-order WENO  1.361 460 5th-order upwinding scheme (5th-order upwind) also pro-
Sth-order WENO  0.551 710 duces some oscillatory behavior (S€ig. 8) and its accu-
CE/SE Scheme I Newton iteration  0.638 15 racy is not substantially improveq. The two WENO schemes
(CFL = 0.73) guarantee non-oscillatory solutions but require long com-
a | error atz = 25¢m. putational times. It is interesting that solution accuracy of
b Rounding-off CPU time during 60 min integration time. the 5th-order WENO scheme is comparable to that of the
© No convergence. CE/SE method. However, solutions of the CE/SE method
¢ Unstable numerical solution. are obtained with much faster computational time.

The peak shape of the breakthrough curve is character-

In the framework of the MOL, the band Jacobian matrix ized by a sharpening front and tailing rear. Hig. 8 the
is constructed with ML= (6 — 1) x Nmeshand MU= (6 — breakthrough curves at= 25 cm (or the exit of the column)
3) x Nmeshfor all discretization methods. Usirtgq. (35a) are depicted according to the numerical schemes. As stated
the maximum number of non-zero Jacobian elements is earlier, an overshoot is appearing near maximum concen-
ngxt = (31Nmesh+ 2) Nmesh However, it would be ade-  trations in the 5th-order upwinding scheme. The 5th-order
guate for the Jacobian matrix to be constructed by the sparseVENO scheme and the CE/SE method with 0.727 show
matrix technique rather than the band matrix, because thegood agreement with the reference solution. It is worth not-
actual number of non-zero elements inside the band matrixing that the chromatographic adsorption problem is not stiff
(IMOL) is less than 1% offMIL. In this study, since the  but demonstrates steep fronts, and a high CFL numfer (
band Jacobian is numerically evaluated because of the com-can be used.
plex adsorption isotherm model, much longer computational  In Fig. 9, the salt and total liquid concentrations are shown
time will be required for the MOL. The number of mesh on the basis of the equivalent molar concentration (meq./l).
points iS Nmesh = 201 equally for the CE/SE method and If the hindered salt ion ratio in the steric mass-action model
the MOL. (Brooks & Cramer, 199pis equal to zerdo = 0), the salt

In the two-component ion-exchange probleable 5 concentration would be constant@tac) = 207 meq./l and
shows the CPU time for simulation of 60-min operation time the total concentration(gsa + Cnac)) would mimic the
and accuracy of solutions at= 25 cm for 60 min. To evalu-  profile of the BSA liquid concentration iRig. 8 However,
ate the accuracy, the reference solution is obtained from thesince salt ions (Cl) are sterically hindered on the surface
CE/SE method on 401 mesh points with= 0.727, where of resin particles by adsorbed BSA proteins, the salt lig-
the computational time is about 60 min. Even though the Ja- uid concentration decreases and the chloride ions are bound
cobian of the adsorption isotherm is numerically evaluated within the resin.

3.5+ Reference solution
------- Ist upwind
3 A :». X Sthupwind
a )5 On 5th WENO
%" = CE/SE, CFL=0.73
=
g 2]
=t
5 1
/M
0.5
() ool } t + |
20 25 30 35 40
time (min)

Fig. 8. Breakthrough curve of the protein (BSA) according to numerical schemes for the BSA-NaCl ion-exchange problem.
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Fig. 9. Breakthrough curve of the total liquid concentrat®SA + NaCl) and the salt (NaCl) for the BSA-NaCl ion-exchange problem.

4. Conclusion weak anion resin (Matrex PAE-1000) in an isocratic mode
(Cnact = 207 mmol/l). For the anion-exchange between

In this paper, the space—time CE/SE method is extended toBSA and Ct, the mass action law (or equilibrium constant)
solve partial differential algebraic equation (PDAE) systems, s expressed:

by including a Newton iterative method for solving nonlinear _ /e
algebraic equations. The CE/SE method is compared with .. _ % (ﬁ) v (A1)
the MOL with high accuracy upwinding schemes in terms S aj '
of accuracy, computational performance and occurrence of
spurious solutions for chromatographic separation problems
described by a non-stiff PDAE system.

In the case studies presented, the current CE/SE schem
has the best numerical performance among the six test
schemes. This feat, at least partially, is due to the fact that

whereK ;; is the equilibrium constant farcomponent (BSA)
to be adsorbed on the resin saturated witomponent
éCI—). z is the ion valence for-component, wheregsa =
4.9107 and- = 1. & anda; are the activities in the liquid
and solid phases, respectively, defined as follows:

the CE/SE method enforces flux conservation in space-timeq; = ,C;, i = BSAorCI™ (A.2)
and, therefore, is inherently adept at resolving steep or
shock moving fronts. The current CE/SE scheme is also a@ = ¥iziyi, i=BSAorCl” (A.3)

easy to implement because, using a space—time mesh, the _ - - i

convection, diffusion and reaction terms can be discretized Where vi and vi are the Ilqwd and surfac.e agtmty coe'ffl-

in a straightforward manner. For stability, the spatial mesh C|ents,. respectively, amy is the mol fraction in the solid

interval and the time step size specified may need to Sat_phase

isfy the CFL condition only. However, to meet accuracy ny . _

requirement, they may be subjected to stricter constraints.”’ = nt’ i =BSAorCl (A4)

This is particularly true when the system is stiff. As such, _ ) )

an effort to extend the current scheme for application to NOt€ that (i) nj has the units, (mmol/kg-resin), not

stiff chromatographic adsorption problems is under way. ~ (Meq./kg-resin), and (iip¢,- will not stoichiometrically be
Finally noted that, because the current study represents thd?0und on the resin because the adsorbed salt counter-ions

first application of the CE/SE method to chromatographic (CI7) may be sterically hindered by the macromolecule

adsorption problems, the CE/SE algorithm presented here(BSA). The steric mass action is modeled agioks and

must be considered as a scheme stillin its earlier stage of de-Cramer (1992)

velopment. Thus, in spite of the prgmising numerical results ;. — ZBSAESA + 2o Ak + o1y (A.5)

presented, the advantages and disadvantages of the CE/SE

method (as compared with other established methods) carwhere ny is the resin capacity and”, _ is the hindered

cl-
only be evaluated objectively through future studies. salt concentration expressedfaé, = ongga- As a result,
Eqg. (A.5)is:
Appendix A nT = }’ZESA(ZBSA +0) + na, (A.6)

The bovine serum albumin (BSA) showing $£14.7-4.9 whereo is the steric factor (or molar ratio of the hindered
and My, ~ 69kDa Raje & Pinto, 199Y is adsorbed on a  salt to proteins) which is set 19 = 24.0 for the BSA—NaCl



Y.-l. Lim et al. / Computers and Chemical Engineering xxx (2003) XXX—XXX

system. Thusyc,- means irEg. (A.3)the molar fraction of
CI~ excluding the hindered salt ionﬁg,).
The liquid activity coefficient for BSA is assumed to be

15

is noted that the two model parameters &nd o) are fit
to the experimental data given Il and Pinto (1995) In
Fig. 7, experimental data and concentrations predicted by

yesa = 1 because protein solutions are in most cases dilutethe model are shown witlm = 180 ando = 24.0. Ac-

but ynac) is defined by a Debye—Huckel mod&romley,
1973:

—0.511/1)z4 7|

1+ V1
(0.06+ 0.6B)|z42_|1

(1+ 1.51/|z42-1)?

wherel is the ionic strength and the absolute value of the
charge productlz,z_| = 1.0, for the salt. The model con-
stantB is known asB = 0.0574 for NaCl, which is assumed
to be valid for the binary system (BSA-NaCl) because the
protein concentration(gsa = 0.9 mmol/l) is much lower
than that of the saltnaci = 207 mmol/l). Neglecting the
protein effect on the salt activity, the salt ionic strength is
expressed:

>

j=Nat*,CI~

IN(ynac) =

+BI (A7)

= - mﬂ? = MNaCl (A.8)

wherem; is the molarity (mol/kg-solvent). Here, the mo-
larity is estimated on the basis of the molar concentration
(C;, mmol/l) for this dilute aqueous solution, assuming the
solution density is 1.0 kg/I:

1.0 x 10 3Cpnaci
1- 3 —ssaNaci 1.0 x 1076C; My

(A.9)

MNaCl ~

where the molecular weighiy) is (My)ssa &~ 69,000 and
(Mw)Nacl = 58.4 g/mol.

In the isocratic mode,ynaci ~ 0.87 at Cnacl
0.207 mol/l, which is quiet similar to experimental data for
the pure NaCl solution at = 0.2 in Bromley (1973)

The surface activity coefficient) is given inRaje and
Pinto (1997)

w %

2 :
j=1 2k =10k K

2
NG =S [In [ > wjeji | +1- ,
j=1

i = BSAorCI” (A.10)

where§ is the shape factoSgsa = 13.55 andS¢- = 1.0),
wj is the surface fraction ang; is the Boltzmann weighting
factor. The surface fraction is defined:

Siyi

2
>5=155Yi
The Boltzmann weighting factor is simply proposed for the
BSA-NaCl systemRaje & Pinto, 199Y.

, i=BSAorCr (A.11)

wj =

—MZsayBsA
O‘CI—BSA=9XD<—RTX Soon ) (A.12)
elsewhereqjj = 1.0. Here,m = 180kcal/mol, R =

1.9872x 10 3kcal/(K mol) andT = (35.4 + 27315)K. It

cording toRaje and Pinto (1997)K1, = 2.175 x 1010 at
T = 354°C, in terms of the above units for the solid and
liquid concentrations.

Finally, the equilibrium concentration functiorsy. (A.1),
are expressed as an implicit function@fandn, as shown
in Eq. (1c)

i =BSAorCI”
(A.13)

gl(CBSAa CC|_ ) nESAa né'*) = 07

To solveEq. (A.13) the Powell hybrid algorithm (from the
IMSL numerical library) is used, where the relative tolerance
of the variable differences\y;) is set to 10 x 10~* and the
Jacobian is numerically evaluated.
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